Tutorial 3

Sum of combinatorial games

Let G_1, \dots, G_n be *n* combinatorial games. Let *G* denote their sum. Let g_1, \dots, g_n be the S-G functions of G_1, \dots, G_n respectively and let *g* be the S-G function of *G*.

Proposition 1.

$$g(x_1, \cdots, x_n) = g_1(x_1) \oplus \cdots \oplus g_n(x_n)$$

Exercise 1. Consider the following 3 games.

 G_1 : 1-pile nim.

 G_2 : Subtraction game with $S = \{1, 2, 3, 4, 5, 6\}$.

 G_3 : When there are n chips remaining, a player can remove only 1 chip if n is odd and can remove any positive even number of chips if n is even.

Let g_1, g_2, g_3 be the S-G functions of the 3 games respectively. Let G denote the the sum of G_1, G_2, G_3 and let g be the S-G function of G.

(i) Find $g_1(14), g_2(20), g_3(24)$.

(*ii*) Find g(14, 20, 24).

(iii) Find all winning moves of G with position (14, 20, 24).

Solution: (i) Since G_1 is 1-pile nim, we have $g_1(n) = n$ for all n, hence $g_1(14) = 14$. Since G_2 is subtraction game with $S = \{1, 2, 3, 4, 5, 6\}$, we have $g_2(20) = 6$ since $20 \equiv 6 \pmod{7}$. To find g_3 , by backwards induction, we have

k0 1 23 4 56 7 8 9 1011 12. . . 20 3 0 0 $g_3(k)$ 0 1 1 0 4 0 56 . . . Hence we have

$$g_{3}(k) = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k \ge 3 \text{ and } k \text{ is } odd \\ \frac{k}{2} & \text{if } k \text{ is even} \end{cases}$$

Hence $g_3(24) = 12$.

(ii) By (i), we have

 $g(14, 20, 24) = g_1(14) \oplus g_2(20) \oplus g_3(24) = 14 \oplus 6 \oplus 12 = 4.$

(iii) Since

$$14 \oplus 6 \oplus 12 = \frac{(1, 1, 1, 0)_2}{(0, 1, 1, 0)_2}$$
$$\underbrace{(1, 1, 0, 0)_2}_{(0, 1, 0, 0)_2} = 4$$

All winning moves are: choosing G_1 and removing 4, or choosing G_2 and subtracting 4, or choosing G_3 and removing 4 chips.

Two-person zero-sum games

Definition 1. A game is called a two-person zero-sum game if

(i) Two players make their moves simultaneously.

(ii) One player wins what the the other player loses.

Strategic form

Definition 2. A strategic form of a two-person zero-sum game is a triple (X, Y, π) , where X, Y are the sets of strategies of Player I and Player II respectively, and $\pi : X \times Y \to \mathbb{R}$ is the payoff function of Player I.

In this note, we only consider the case that both X and Y are finite, so that we can identify the payoff function as a matrix.

Matrix game

Assume $X = \{1, \dots, m\}, Y = \{1, \dots, n\}$ are the sets of strategies of Player I (the row player) and Player II (the column player) respectively. Let $A \in M_{m \times n}(\mathbb{R})$ be the payoff matrix, that is, $a_{i,j}$ denotes the payoff of the the row player when the row player takes his strategy i and the column player takes his strategy j.

Pure strategy: If A has a saddle point $a_{k,l}$, that is

$$a_{k,l} = \min_{1 \le j \le n} a_{k,j} = \max_{1 \le i \le m} a_{i,l},$$

then the row player has an optimal pure strategy k and the column has an optimal pure strategy l.

Mixed strategy: Let \mathcal{P}^m denote the collection of p dimensional probability vectors. We call each probability vector $\boldsymbol{p} \in \mathcal{P}^m$ a mixed strategy for the row player. Similarly, each $\boldsymbol{q} \in \mathcal{P}^n$ is called a mixed strategy for the column player.

Theorem 2. (Minimax Theorem). Let A be an $m \times n$ matrix. Then there exist a number $v \in \mathbb{R}$ and two probability vectors $\boldsymbol{p} \in \mathcal{P}^m$, $\boldsymbol{q} \in \mathcal{P}^n$ such that (i) $\boldsymbol{p}A\boldsymbol{y}^T > v$ for any $\boldsymbol{y} \in \mathcal{P}^n$.

(ii)
$$\boldsymbol{x} A \boldsymbol{q}^T \leq v$$
 for any $\boldsymbol{x} \in \mathcal{P}^m$.
(iii) $\boldsymbol{p} A \boldsymbol{q}^T = v$.

Remark: (1) The number v in the above theorem is unique, and we call it the value of A, write v = v(A).

(2) In the above theorem, we call *p* an optimal (mixed) strategy for the row player and *q* an optimal (mixed) strategy for the column player. In general, *p* and *q* may not be unique.

(3) If v = 0, we say this game is fair.

(4) By solving a matrix game, we mean finding the value of matrix A and optimal strategies for the two players.

Exercise 2. Show that the number v in the Minimax Theorem is unique.

Proof. Suppose two triples (v, p, q), (v', p', q') both satisfy (i), (ii), (iii) in the Minimax Theorem. Note that by using (i), (ii) several times, we have

$$v \leq \boldsymbol{p} A \boldsymbol{q}^{\prime T} \leq v^{\prime} \leq \boldsymbol{p}^{\prime} A \boldsymbol{q}^{T} \leq v.$$

Exercise 3. Prove if $A^T = -A$, then v(A) = 0.

Proof. Write v(A) = v. Assume $p, q \in \mathcal{P}^n$ are optimal strategies. Then by the Minimax Theorem, we have

$$\begin{cases} \boldsymbol{p} A \boldsymbol{y}^T \ge v, & \forall \boldsymbol{y} \in \mathcal{P}^n. \\ \boldsymbol{x} A \boldsymbol{q}^T \le v, & \forall \boldsymbol{x} \in \mathcal{P}^n. \\ \boldsymbol{p} A \boldsymbol{q}^T = v. \end{cases}$$

Taking transpose in the above equations and applying the assumption that $A^T = -A$, we have

$$\left\{egin{aligned} oldsymbol{y} A oldsymbol{p}^T &\leq -v, & orall oldsymbol{y} \in \mathcal{P}^n. \ oldsymbol{q} A oldsymbol{x}^T &\geq -v, & orall oldsymbol{x} \in \mathcal{P}^n. \ oldsymbol{q} A oldsymbol{p}^T &= -v. \end{aligned}
ight.$$

By the Minimax Theorem and the uniqueness of the value of A, we have v = -v, hence v = 0.

Solving matrix games

Two useful principles: 1. Deleting the dominated rows and columns to obtain a new matrix with lower dimensions. Recall that a row is dominated if it is dominated (or say bounded) from above by another row, a column is dominated if it is dominated from below by another column.

2. The principle of indifference. Assume $\mathbf{p} = (p_1, \cdots, p_m)$ and $\mathbf{q} = (q_1, \cdots, q_n)$ are optimal strategies for Player I and Player II respectively. Then

(i) for any
$$k \in \{1, \dots, m\}$$
 with $p_k > 0$, we have $\sum_{j=1}^n a_{k,j} q_j = v(A)$.

(ii) for any $l \in \{1, \dots, n\}$ with $q_l > 0$, we have $\sum_{i=1}^m a_{i,l} p_i = v(A)$.

Exercise 4. In a Rock-Paper-Scissors game, the loser pays the winner an amount of money which is equal to the total number of fingers shown by the two players (for example, if Player I shows Scissors and Player II shows Paper, then Player II should pay 7 dollars to Player I).

(i) Find the value of the games.

(ii) Find optimal strategies for the two players.

Exercise 5. Let

(i) Find the reduced matrix of A by deleting dominated rows and columns.

(ii) Solve the two-person zero-sum game with game matrix A.